Search results for " 53C21"

showing 7 items of 7 documents

Rescaling principle for isolated essential singularities of quasiregular mappings

2012

We establish a rescaling theorem for isolated essential singularities of quasiregular mappings. As a consequence we show that the class of closed manifolds receiving a quasiregular mapping from a punctured unit ball with an essential singularity at the origin is exactly the class of closed quasiregularly elliptic manifolds, that is, closed manifolds receiving a non-constant quasiregular mapping from a Euclidean space.

Unit sphereEssential singularityClass (set theory)Pure mathematicsmath.CVMathematics - Complex VariablesMathematics::Complex VariablesEuclidean spacemath.MGApplied MathematicsGeneral MathematicsPrimary 30C65 Secondary 53C21 32H02010102 general mathematics16. Peace & justiceMathematics::Geometric Topology01 natural sciencesRescaling010101 applied mathematicsQuasiregular mappingMathematics - Metric GeometryIsolated essential singularities111 MathematicsGravitational singularity0101 mathematicsMathematicsProceedings of the American Mathematical Society
researchProduct

The Poisson embedding approach to the Calderón problem

2020

We introduce a new approach to the anisotropic Calder\'on problem, based on a map called Poisson embedding that identifies the points of a Riemannian manifold with distributions on its boundary. We give a new uniqueness result for a large class of Calder\'on type inverse problems for quasilinear equations in the real analytic case. The approach also leads to a new proof of the result by Lassas and Uhlmann (2001) solving the Calder\'on problem on real analytic Riemannian manifolds. The proof uses the Poisson embedding to determine the harmonic functions in the manifold up to a harmonic morphism. The method also involves various Runge approximation results for linear elliptic equations.

Pure mathematicsRIEMANNIAN-MANIFOLDSDEVICESGeneral MathematicsBoundary (topology)INVISIBILITYPoisson distribution01 natural sciencesinversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEs0103 physical sciences111 MathematicsREGULARITYUniqueness0101 mathematicsEQUATIONSMathematicsosittaisdifferentiaaliyhtälötCalderón problemCLOAKING010102 general mathematicsRiemannian manifoldInverse problemFULLManifoldPoisson embeddingHarmonic functionsymbolsEmbedding010307 mathematical physics35R30 (Primary) 35J25 53C21(Secondary)INVERSE PROBLEMSMathematische Annalen
researchProduct

Homogeneous Weyl connections of non-positive curvature

2015

We study homogenous Weyl connections with non-positive sectional curvatures. The Cartesian product $\mathbb S^1 \times M$ carries canonical families of Weyl connections with such a property, for any Riemmanian manifold $M$. We prove that if a homogenous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (streched non-positive), then it must be locally of the product type.

Mathematics - Differential GeometryPure mathematics01 natural sciencesGaussian thermostatssymbols.namesake0103 physical sciencesFOS: MathematicsNon-positive curvatureNon-positive curvature0101 mathematicsConnection (algebraic framework)53C24 53C21Mathematics010102 general mathematicsMathematical analysisLie groupWeyl connectionsCartesian productManifoldUnimodular matrixDifferential Geometry (math.DG)Differential geometrysymbolsWeyl transformationMathematics::Differential Geometry010307 mathematical physicsGeometry and TopologyAnalysisAnnals of Global Analysis and Geometry
researchProduct

Regular 1-harmonic flow

2017

We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …

Applied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Total variation flow; harmonic flow; well-posednessRiemannian manifoldLipschitz continuitySubmanifold01 natural sciencesManifoldDomain (mathematical analysis)35K51 35A01 35A02 35B40 35D35 35K92 35R01 53C21 68U10010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)FOS: MathematicsMathematics::Differential GeometrySectional curvature0101 mathematicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Tensor tomography on Cartan–Hadamard manifolds

2017

We study the geodesic X-ray transform on Cartan-Hadamard manifolds, and prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016) to dimensions $n \geq 3$ and to the case of tensor fields of any order.

Mathematics - Differential GeometryPure mathematicsGeodesic01 natural sciencesTheoretical Computer ScienceTensor fieldHadamard transform44A12 53C21 53C22 45Q05Euclidean geometryFOS: MathematicsSectional curvatureTensor0101 mathematicsMathematical PhysicsMathematicsCartan-Hadamard manifoldsSolenoidal vector fieldApplied Mathematics010102 general mathematicsComputer Science Applications010101 applied mathematicsDifferential Geometry (math.DG)Bounded functionSignal Processingtensor tomographyMathematics::Differential GeometryInverse Problems
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

A sharp quantitative version of Alexandrov's theorem via the method of moving planes

2015

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let $S$ be a $C^2$ closed embedded hypersurface of $\mathbb{R}^{n+1}$, $n\geq1$, and denote by $osc(H)$ the oscillation of its mean curvature. We prove that there exists a positive $\varepsilon$, depending on $n$ and upper bounds on the area and the $C^2$-regularity of $S$, such that if $osc(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_i}$ and $B_{r_e}$ such that $S \subset \overline{B}_{r_e} \setminus B_{r_i}$ and $r_e -r_i \leq C \, osc(H)$, with $C$ depending only on $n$ and upper bounds on the surface area of $S$ and the $C^2$ regularity of $S$. Our approach is based on a…

Mathematics - Differential GeometrySoap bubbleMean curvatureOscillationApplied MathematicsGeneral Mathematics010102 general mathematicsConcentricSurface (topology)53C20 53C21 (Primary) 35B50 35B51 (Secondary)01 natural sciencesAlexandrov Soap Bubble Theorem method of moving planes stability mean curvature pinching.CombinatoricsHypersurfaceMathematics - Analysis of PDEsDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics010307 mathematical physicsDiffeomorphism0101 mathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct